

Investigating the impact of artificial intelligence on customers' purchasing intentions in the insurance industry

Iman Azizi¹

Received: 2025/02/01 Accepted: 2025/03/01 Published: 2025/04/03

Abstract

Artificial intelligence (AI) is transforming customer-insurer interactions by changing the nature of online shopping. This study uses social support theory to examine customer purchase intentions by combining AI technology, customer social media engagement, and the policyholder's shopping experience. Online surveys were conducted with 385 social media users who had experience purchasing insurance policies online. Partial least squares structural equation modeling (PLS-SEM) was used to examine the data and proposed hypothesis. This study shows that AI positively affects customer experience and customer engagement on social media. Similarly, there is a positive relationship between social media engagement and customer experience, leading to greater customer satisfaction and increased purchase intention. The results suggest that AI can be used on social media to improve customer experience and increase satisfaction and purchase intention.

Keywords

Artificial Intelligence, Customer Engagement on Social Media, Customer Experience, Customer Satisfaction, Purchase Intention.

1. Head of Shahrekord Branch of Parsian Insurance Company. (Corresponding Author: Aziziiman93@yahoo.com).

1- Introduction

The world has undergone a profound transformation since the advent of artificial intelligence (AI). Machines equipped with AI can perform complex tasks such as problem solving, planning, and learning by imitating human intelligence (Overgoor et al., 2019). AI has transformed traditional business performance tools into modernized intelligent machines that have multiple thinking capabilities (such as self-learning, automated mental effort, and self-planning) (Wen et al., 2022).

The development of AI technology has also transformed various aspects of business (such as marketing, customer service, and customer interaction) and is becoming increasingly popular around the world (Bock et al., 2020). With the help of AI, problems can be solved in a logical and innovative way through machine learning. AI is a hot topic among marketers and customers, providing benefits to both groups. Kim and Kim (2017) report that many customers have benefited from using AI to perform daily tasks, saving them time and money. AI has made unimaginable situations possible and easy to achieve. AI enables people to engage with operations in a user-friendly and customer-oriented manner. Today's customer expectations are focused on convenience and comfort, and AI effectively meets these parameters. Customers find it easy to use AI to find, select, purchase, and dispose of items. With the use of AI, customers can order and evaluate products from anywhere in the world without any problems (Paschen et al., 2020).

Insurance companies can use AI in various ways, such as empowering customers to make informed decisions, enhancing customer experience, improving business efficiency, promoting coordination and continuous engagement with stakeholders, improving customer service processes, and improving product quality (Sarkar et al., 2020). The use of AI by insurance companies can enhance the customer experience by finding innovative and long-term solutions and improve the company's strategy by making complex and critical decisions in unpredictable, competitive, and uncertain markets. Integrating AI into marketing programs can help insurance companies quickly meet customer demands and gain more credibility with loyal customers (Lee et al., 2022). To efficiently manage marketing activities and maximize customer engagement on social media, many companies are using AI (such as chatbots, consumer feature identification, and content recommendation) to improve the customer experience (Chiu et al., 2021). Also, by providing personalized online shopping information and more purchase recommendations, companies are using AI-based technologies to acquire, maintain, and manage strong customer relationships across social media (Overgoor et al., 2019).

AI and social media have been integrated into e-commerce operations to build effective customer relationships. With the use of these technologies, customers have better knowledge of products, which can positively influence their purchasing behavior. As a result, insurance companies can now achieve high subjective awareness with customers. A company that uses social media expects satisfied customers to post their reviews on their social media pages. These reviews support businesses to connect with potential customers, influence customer attitudes, increase brand awareness, and enable customer feedback. In addition, social media

helps improve product and service quality, as well as increase revenue and sales (Singh et al., 2020).

Since customers spend a significant amount of time on social networking sites, AI can be used to monitor their behavior and understand their purchasing patterns. A growing number of companies are using AI-integrated social media platforms to increase their business engagement and competitiveness (Sarkar et al., 2020). Several empirical studies have shown that AI-integrated social media can increase customer engagement and purchase intention. Research shows that social media engagement consistently influences customers' purchasing decisions. Research shows how AI influences customer behavior by searching for products on different websites for purchase, which is also becoming a fundamental element of digital transformation and has a great impact on customer purchasing decisions (Danckwerts and Kenning, 2019). However, there is insufficient evidence to show how AI affects customer engagement on social media and the subsequent outcomes of increased satisfaction and higher purchase intention. Therefore, this study seeks to investigate whether artificial intelligence affects customer engagement on social media, satisfaction, and purchase intention of insurance company customers.

2- Theoretical foundations of the research

2-1. Artificial intelligence

Artificial intelligence refers to the ability of computers to perform tasks that require intelligence (such as learning, designing, critical thinking, and innovative problem solving), similar to what humans do. Companies rely on AI to gain competitive advantage through digitalization (Jang et al., 2021). Compared to humans, AI processes information faster, makes better decisions, and does not show bias. Companies use AI to collect data from multiple sources, including chatbots, location-based advertising, social media, emails, and websites, to create a large volume of digital information, which is called big data (Yang et al., 2020).

2-2. Social Support Theory

Social support is defined as “individuals’ perceptions of how others in a social network support them or their actions, which may enhance their performance or protect them from harmful consequences” (Huang et al., 2010). Initially, social support theory was developed in terms of offline environments and mental health. Since computer-based communication has become popular, various empirical studies have examined online virtual social support using social support theory. Researchers found that customers’ AI experience, social media participation, and satisfaction constitute nurturing support, while in online social support groups, informational and tangible support facilitates actions and creates a sense of empowerment. According to the researchers, instrumental expressions and support influence social capital and instant messaging. Researchers also found that satisfaction, customer experience, and social media participation influence trust in social commerce (Leong et al., 2020).

This study examines several aspects of social support (e.g., consumer AI experience, social media engagement, and satisfaction) because they have online social features that can provide insights into human-AI interactions. This approach combines multidimensional social support and subsequent reciprocity behaviors to explain how people engage with and are satisfied with it.

2-3. Satisfaction and Purchase Intention

Customers are more likely to purchase products or services when they are satisfied with their experience. Customers are wary of online shopping due to issues such as satisfaction, payment methods, and service quality. Satisfied customers post positive feedback on social media, which influences online communities. Many people purchase goods and services online. Many business organizations use AI to provide a better experience to customers and increase their intention to purchase certain products and services. Customers can easily experience virtual products and make decisions using this service (Pantano et al., 2019). Using AI, customers can choose from a wide range of options with abundant information at their disposal, allowing them to select the most suitable alternative from a set of options with diverse options. AI technology can be used in augmented reality applications to help customers visualize products differently and make the best possible purchasing decisions. AI-based technologies have been integrated into the latest generation of organizations to provide the best and most tailored solutions to customers (Reinartz et al., 2019).

2-4. AI and Customer Experience

Consumer experience describes how customers interact with and feel about a company or brand based on their interactions and reactions. Consumer experience is a combination of cognitive, sensory, emotional, and physical elements. The cognitive element includes higher-level mental functions, including abstract thinking, perception, language, memory, and problem solving. The cognitive elements define the customer experience as performance, speed, and accessibility (Potdar et al., 2018).

Customers' physical and sensory experiences differ between online and offline contexts. Offline experiences consider artifacts, lighting, signage, and layout, while online experiences consider simpler interfaces and more overt designs. Finally, social elements, such as family and friends, relate to the influence of others on the customer experience. These technologies can only enhance the customer experience if their preferences and prior experiences are well understood (Torres et al., 2019). Artificial intelligence tools can accelerate this process by using data and customer profiles to determine the best way to communicate with consumers. Therefore, the following hypothesis is proposed.

Hypothesis 1: Artificial intelligence positively impacts the customer experience.

2-5. Artificial Intelligence and Customer Engagement on Social Media

Artificial intelligence has a significant impact on customer behavior. Companies that use AI may provide customers with a more relevant shopping experience on social media sites. AI allows these companies to determine the effectiveness of their online marketing strategies by

predicting customer behavior and engaging customers on social media to make more analytical choices (Jang et al., 2021). For example, AI makes online shopping a better experience by collecting and considering product information and bridging the gap between companies and customers. Various issues related to social media can be addressed using AI. For example, sales staff may feel uncomfortable and overwhelmed when analyzing large amounts of data provided by social media. The use of AI may provide solutions to such issues in companies, including predictive marketing analytics and automated information mining (Potdar et al., 2018). AI may lead to increased customer engagement on social media. For example, if companies provide customers with different ways to compare product and service features, the integration of AI can increase their engagement on social media platforms (Zhou et al., 2018). Therefore, the following hypothesis is put forward.

Hypothesis 2: AI positively affects customer engagement on social media.

2-6. Consumer Experience and Satisfaction

A customer's experience is the overall perception of a brand or product after interacting with it and learning about it through interaction. There may be a positive or negative reaction to a user's experience depending on their interaction with a product, company, or department within a company. In short, customer experience refers to customers' internal and subjective reactions to direct or indirect interactions with a company or brand. Customers expect seamless transactions to save time and effort. The fluidity of a platform improves the level of consumer satisfaction (Yang et al., 2020).

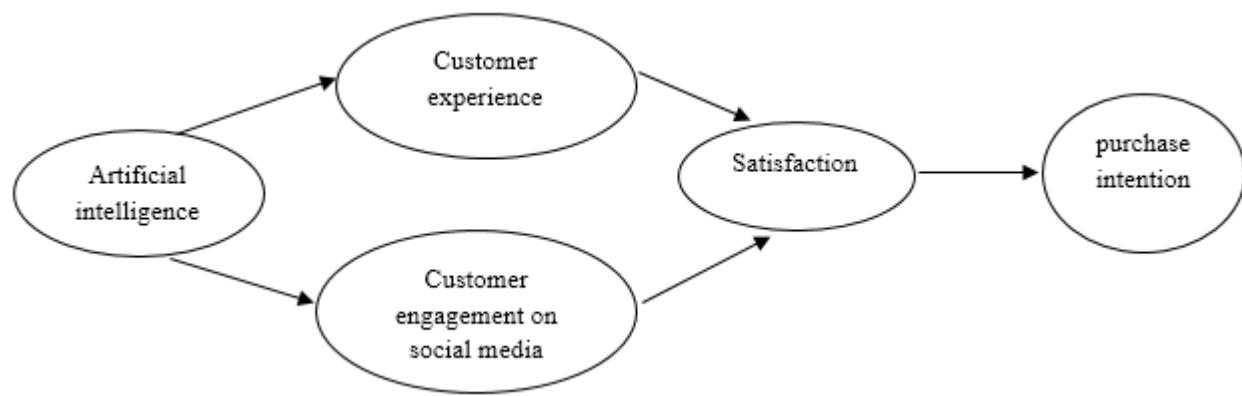
In AI, the user experience is highly personalized and requires participation at multiple levels, including intellectual, spiritual, sensory, physical, and emotional. Interaction with AI-enabled tools involves four factors: cognitive, emotional, physical, and social, and customers are more likely to be satisfied when they have a memorable and positive experience. The literature has established a positive relationship between customer satisfaction and AI experience. As a result, AI technologies provide users with a better experience and increase their trust, satisfaction, and understanding (Borges et al., 2021). Therefore, the following hypothesis is proposed.

Hypothesis 3: Customer experience has a positive impact on customer satisfaction.

2-7. Customer engagement on social media and customer satisfaction

Customer engagement indicates a company's commitment to customers, its ability to maintain customer trust, and the importance of customer loyalty. Customers of these companies are more likely to share positive experiences of a particular brand with others. Customer satisfaction may be higher for those who use social media more (Majeed et al., 2022). Research shows that human interactions affect their psychological processes by influencing the experiences of others. Satisfaction is a cognitive factor for both customers and brands. The interaction between the customer and the company may cause customers to evaluate the product or service with confidence (Rather, 2021). Therefore, it is reasonable to assume the following hypothesis.

Hypothesis 4: Customer engagement on social media positively affects customer engagement and satisfaction.


2-8. Customer satisfaction and purchase intention

To retain customers, companies must offer high-quality products and attractive promotions. In addition to product quality, delivery time and post-purchase support also affect customer satisfaction with digital purchases (Arora and Narula, 2018). To strengthen customer purchase intention, marketers should focus on the inherent features of their website. Studies have shown that customer satisfaction predicts customer purchase intention. Customer purchase intention indicates whether customers intend to purchase another similar product in the future. Therefore, it is assumed that satisfied customers will purchase the product in the future, while dissatisfied customers will purchase the product or service from a competitor (Borges et al., 2021). Therefore, it is logical to propose the following hypothesis.

Hypothesis 5: Customer satisfaction positively affects purchase intention.

2-9. Conceptual model of research

All research studies are based on a conceptual framework, which specifies the variables of interest and the relationships between them. This conceptual framework is a model based on which the researcher theorizes about the relationships between the factors that have been identified in creating an important problem. This theory may not necessarily be the researcher's own and may logically derive from the results of previous research on the problem. Given that the purpose of this research is to investigate the role of artificial intelligence in creating customer satisfaction and purchase intention in the insurance industry. Therefore, the general framework of this research will be to explain the above issue in a systematic and principled manner. To examine the hypotheses of this research, the conceptual model shown in the figure below has been used.

Figure 1: Conceptual research model

3- Research Methodology

The main purpose of conducting research goes beyond collecting information. Instead, it involves pursuing solutions to previously unaddressed questions to enhance existing

knowledge in a particular field. However, it is crucial to demonstrate the validity and accuracy of the newly acquired or generated knowledge to the wider research community and the world at large. This particular research is based on the quantitative research method, which is commonly used by researchers who adopt the scientific paradigm. This technique involves quantifying data and generalizing the results obtained from a subset of the target population. It adheres to structured data collection processes and uses statistical tools to achieve objective analysis. The data output is presented in numerical form.

The study is practical in nature. Applied research refers to a non-systematic approach to identifying solutions to specific research problems or concerns that may involve individuals, groups, or society as a whole. This method is considered “unsystematic” because it proceeds directly towards the solution. The research approach used in this study is descriptive of the correlation type. Descriptive correlational research is a research design that aims to clarify the relationship between two or more variables without establishing a causal link. This requires the collection and analysis of data related to at least two variables to determine the existence of a correlation.

In this study, library resources including existing scientific documents, books and articles were used to develop theoretical foundations, definitions and concepts, and the research variables were measured using a standard questionnaire. This study used a variety of measurement scales: the eight-item AI scale from Kopatina et al. (2020); the three-item AI Customer Experience Scale from Agarwal and Singh (2018); a five-item modified Customer Interaction on Social Media Scale from LaRoche et al. (2012); the four-item Purchase Intention Scale based on Davis (1989); and a four-item consumer satisfaction scale based on Oguma et al. (2016); a questionnaire was developed to assess these constructs and a five-point Likert scale was used to measure the construct, ranging from “strongly disagree” (1) to “strongly agree” (5). Before the questionnaire was finalized, the reliability of the measurement scales was assessed with 30 respondents. Table 1 shows the reliability of each measurement scale used in this study:

Table 1: Allocation of questionnaire questions according to research variables

Variable	Related questions	Cronbach's alpha
Artificial intelligence	1-8	0/876
Customer experience	9-11	0/866
Customer engagement on social media	12-16	0/874
Satisfaction	17-20	0/782
purchase intention	21-24	0/851

In this study, the target population was all social media users who had experience in purchasing insurance policies online. Since there is no accurate information about the number of the statistical population, the statistical population of the study was taken as unlimited, and the relative estimation formula with a marginal error of 5% and a maximum variance of 50% was used to estimate the sample size. Therefore, the number of samples was estimated to be

385 people, and in order to prevent outliers, 450 questionnaires were distributed randomly among social media users, and 385 suitable questionnaires were used for statistical analysis.

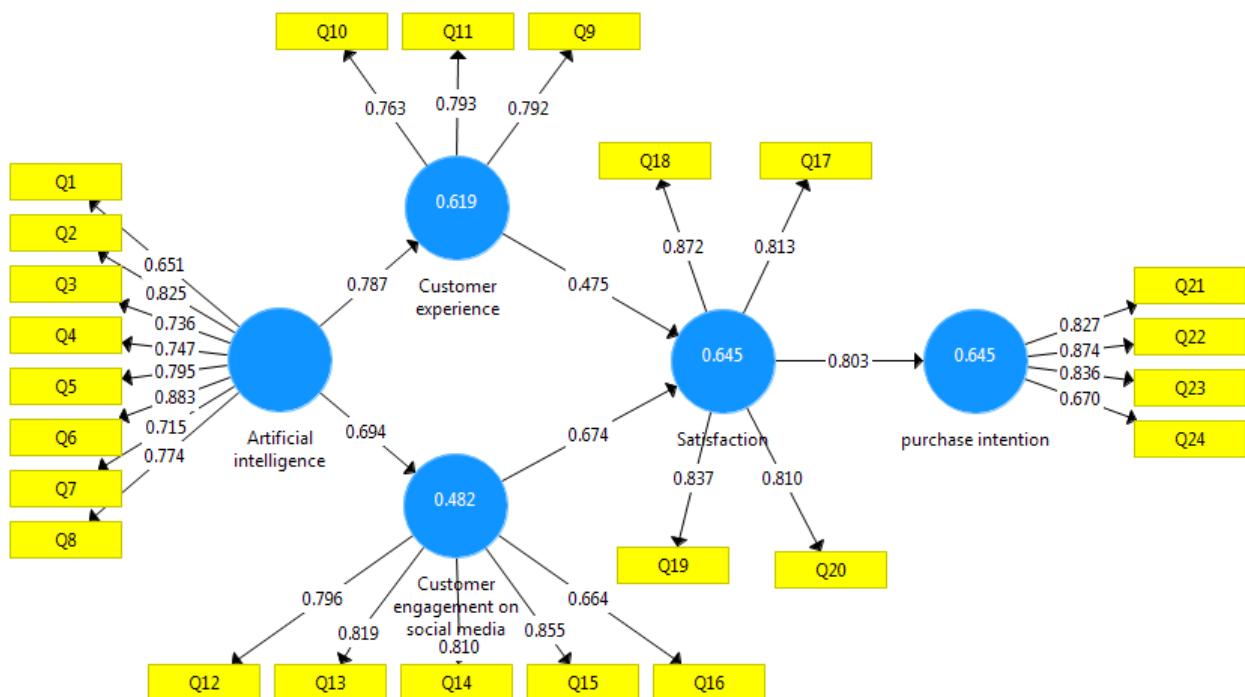
4- Findings

In this study, structural equation modeling with the help of partial least squares method and PLS software was used to test the hypotheses and accuracy of the model. PLS is a variance-based approach that requires fewer conditions compared to similar structural equation techniques such as LISREL and AMOS. Its main advantage is that this type of modeling requires a smaller number of samples than LISREL. It is also considered a powerful method in situations where the number of samples and measurement items is limited and the distribution of variables can be uncertain. PLS modeling is carried out in two stages. In the first stage, the measurement model should be examined through validity and reliability analyses and confirmatory factor analysis, and in the second stage, the structural model should be examined by estimating the path between variables and determining the model fit indices.

To examine the reliability of the questionnaire, in addition to Cronbach's alpha coefficient, which is presented in Table 2 and confirms the appropriate reliability of the questionnaire, the PLS method was also used. To evaluate the convergent validity, the AVE (average variance extracted) and CR (composite reliability) criteria were used, the results of which for the dimensions of the five research variables are shown in Table (1). Composite reliability higher than 0.7 and mean variance higher than 0.5 are two necessary conditions for convergent validity and correlation of the constructs. As is clear from Table (1), all composite reliability values are higher than 0.7 and the values related to the mean variance are higher than 0.5, and this confirms that the convergent validity of the present questionnaire is acceptable.

Table 2: Results of the mean variance extracted for the research constructs

Variable	Cronbach's alpha	Composite reliability	AVE
Artificial intelligence	0/940	0/951	0/710
Customer experience	0/751	0/858	0/669
Customer engagement on social media	0/902	0/928	0/721
Satisfaction	0/933	0/953	0/834
purchase intention	0/869	0/911	0/720


In the divergent validity section, the difference between the indices of a construct and the indices of other constructs in the model is compared. This is calculated by comparing the square root of each construct with the values of the correlation coefficients between the constructs. For this, a matrix must be formed in which the values of the main diameter are the matrix of the square root of the AVE coefficients of each construct and the values of the lower diameter are the correlation coefficients between each construct and other constructs. This matrix is shown in Table (2). As is clear from Table (2), the square root of each

construct is greater than the correlation coefficients of that construct with other constructs, which indicates that the divergent validity of the constructs is acceptable.

Table 2: Matrix of comparison of square root of AVE with correlation coefficients of constructs (divergent validity)

Variable	Artificial intelligence	Customer experience	Customer engagement on social media	Satisfaction	purchase intention
Artificial intelligence	0/843				
Customer experience	0/347	0/818			
Customer engagement on social media	0/369	0/219	0/849		
Satisfaction	0/447	0/418	0/342	0/913	
purchase intention	0/513	0/551	0/245	0/315	0/848

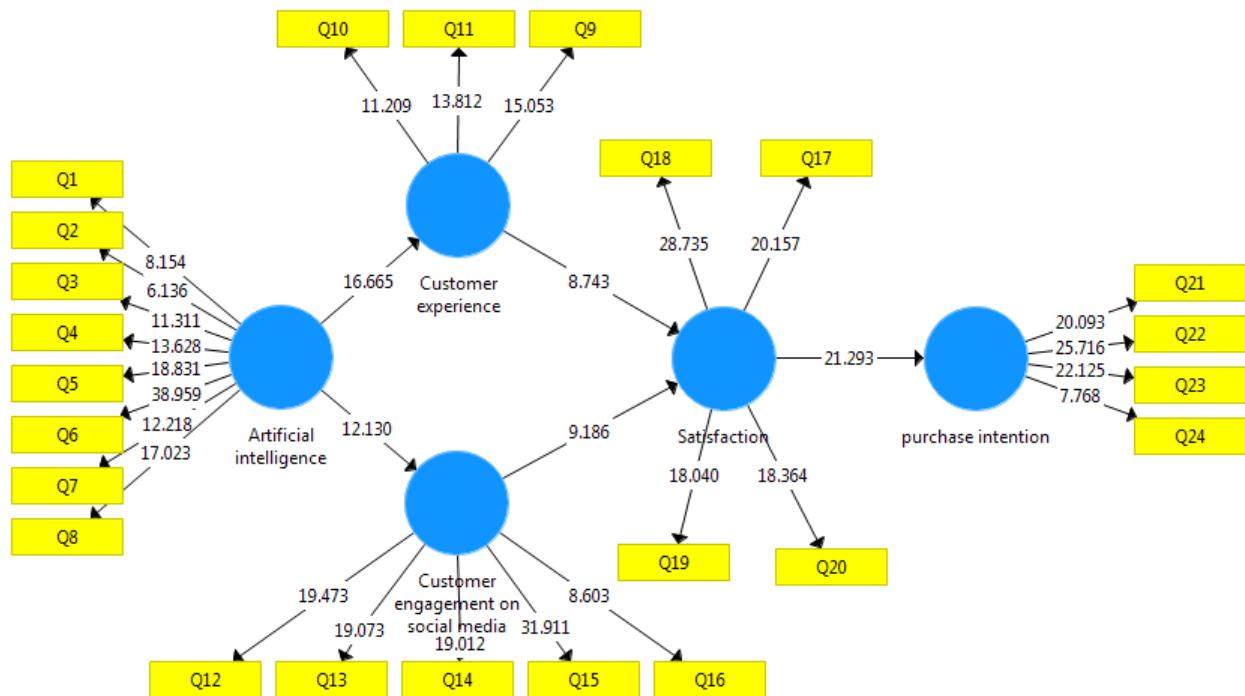
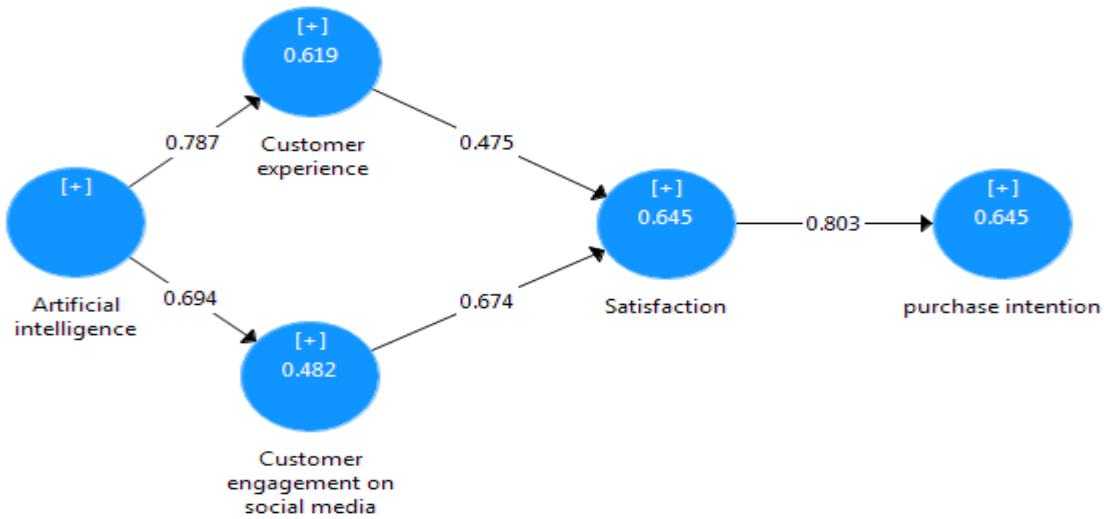

In the PLS method, index reliability is used. Index reliability is also calculated by measuring factor loadings by calculating the correlation value of the indices of a construct with that construct. If this value is equal to or greater than 0.4, it confirms that the reliability of that measurement model is acceptable. However, if the factor loading value between a question and the relevant dimension is less than 0.4, that question can be removed from the model and subsequent analyses. As can be seen in Figure (2), all factor loading values between constructs and questions are greater than 0.4, which indicates a high correlation.

Figure 2: Software output - tested research model (path coefficients and factor loadings).


Structural model test which is related to testing research hypotheses and the effect of latent variables on each other. To confirm the research hypotheses, the Bootstrapping command of

Smart PLS software was used, which shows the output of the t-coefficients (Figure 3). When the t-values are in the range of more than +1.96 and less than -1.96, it indicates the significance of the relevant parameter and subsequently confirms the research hypotheses.

Figure 3: Software Output - t-Coefficients

One way to evaluate the model is the coefficient of determination (R^2). The coefficient of determination (R^2) measures how much of the variance in a dependent variable is explained by the independent variable(s). Therefore, it is natural that this value is equal to zero for the independent variable and greater than zero for the dependent variable. The higher this value, the greater the influence of the independent variables on the dependent. Based on the coefficient of determination of the model, it can be stated that AI, customer experience, customer interaction on social media, and customer satisfaction were able to explain 0.645 of the variance in the purchase intention variable in total; the researchers considered three distinct values of 0.19, 0.33, and 0.67 as threshold values for weak, medium, and strong R^2 samples. It may be inferred from this that the model shows admirable predictive ability, with any residual value attributable to forecast error and the potential influence of other factors that may influence customer purchase intention.

Figure 5: Evaluation of formative measurement models

According to the results obtained from the path coefficient and t-statistic, it can be said that artificial intelligence has a significant effect on customer experience and customer interaction on social media. The results show that customer experience in using artificial intelligence and customer interaction on social media has a positive effect on their satisfaction. The result also indicates that customer satisfaction ultimately leads to an increase in their purchase intention. In general, the results of this study showed that artificial intelligence, with the mediating role of customers' experience in using artificial intelligence and customer interaction on social media, leads to improved customer satisfaction and more purchase intention in the future.

Table 4: Direct effects, t-statistic and the result of the research hypotheses

Hypotheses	Standardized path coefficient β	t-statistic	Meaningfulness	Accept or reject the hypothesis
Artificial Intelligence \rightarrow Customer Experience	0/787	16/665	Sig<0.05	Accept
Artificial Intelligence \rightarrow Customer Engagement on Social Media	0/694	12/130	Sig<0.05	Accept
Customer Experience \rightarrow Satisfaction	0/475	8/743	Sig<0.05	Accept
Customer engagement on social media \rightarrow Satisfaction	0/674	9/186	Sig<0.05	Accept
Satisfaction \rightarrow Purchase intention	0/803	21/293	Sig<0.05	Accept

5- Conclusion and Recommendations

This study examines how AI technology can influence customer behavior, particularly satisfaction and purchase intention, through social media marketing. This study uses social support theory to explain how companies use AI in their social media marketing campaigns to stimulate customer responses. This study shows that insurance companies that use AI in their social media marketing campaigns increase customer satisfaction and engagement. Insurance companies can use modern AI-based tools to expand social media drives relevant

to customers. In addition, insurance companies can use AI technology to transform traditional businesses into digital businesses by attracting website traffic through social media marketing campaigns, which then convert into customers to remain competitive. Insurance companies' use of AI in social media advertising helps increase sales volume due to the positive relationship between AI and customer experience.

In this study, AI was positively associated with customer engagement on social media. These findings support the idea that marketers can engage potential customers by integrating AI into social media. Furthermore, there is a positive correlation between social media engagement and customer satisfaction, and thus, more engaged customers were more likely to be satisfied.

The findings of this study suggest that AI can support chatbots and virtual assistants, and combining them with social media may increase customer satisfaction. The study found empirical evidence that customer purchase intention is positively influenced by customer engagement on social media.

To improve customer engagement on social media, insurance companies can use AI-powered systems to determine important product features. Due to the increased use of social media platforms, customer engagement has been significantly enhanced, indicating that social media is evolving as a new space for connecting and interacting with customers to promote goods and services. Therefore, when planning customer engagement strategies to increase customer purchase intention, AI technology and customer behavior should be considered.

Customer experience and satisfaction positively affect purchase intention. Post-purchase customer experience is considered a critical factor in customer decision-making. In addition, customer satisfaction with previous purchase experiences determines their loyalty. Insurance companies should use digital platforms to collect customer feedback, effectively manage digital marketing, and use AI technologies.

It is recommended that insurance companies use AI-based technology to increase customer awareness of their online stores and encourage them to buy from them. The results show that customers are more inclined to shop on online platforms that use AI-enabled technologies, which makes their purchase decisions easier. This study supports the idea that insurance companies should use AI-based technology to satisfy customer purchase intentions. Based on respondents' opinions and data analysis, insurance companies should leverage modern AI technology to gain a competitive advantage over their competitors.

References

Arora, P., Narula, S., 2018. Linkages between service quality, customer satisfaction, and customer loyalty: a literature review. *J. Market. Manag.* 17 (4), 30–53.

Baabduallah, A. M. (2024). Generative conversational AI agent for managerial practices: The role of IQ dimensions, novelty seeking and ethical concerns. *Technological Forecasting and Social Change* Volume 198, 122951.

Bock, D.E., Wolter, J.S., Ferrell, O.C., 2020. Artificial intelligence: disrupting what we know about services. *J. Serv. Market.* 34 (3), 317–334.

Borges, A.F., Laurindo, F.J., Spçnola, M.M., Gonçalves, R.F., Mattos, C.A., 2021. The strategic use of artificial intelligence in the digital era: systematic literature review and future research directions. *Int. J. Inf. Manag.* 57, 102225.

Chiu, Y.T., Zhu, Y.Q., Corbett, J., 2021. In the hearts and minds of employees: a model of pre-adoptive appraisal toward artificial intelligence in organizations. *Int. J. Inf. Manag.* 60, 102379.

Danckwerts, S., Kenning, P., 2019. "It's MY Service, it's MY Music": the role of psychological ownership in music streaming consumption. *Psychol. Market.* 36 (9), 803–816.

Huang, K.-Y., Nambisan, P., Uzuner, "O., 2010. Informational support or emotional support: preliminary study of an automated approach to analyze online support community contents. *ICIS 2010 Proceedings* 1–11

Jang, M., Jung, Y., Kim, S., 2021. Investigating managers' understanding of chatbots in the Korean financial industry. *Comput. Hum. Behav.* 120, 106747 in press.

Lee, C.T., Pan, L.Y., Hsieh, S.H., 2022. Artificial intelligent chatbots as brand promoters: a two-stage structural equation modeling-artificial neural network approach. *Internet Res.* 32 (4), 1329–1356.

Leong, L.Y., Hew, T.S., Ooi, K.B., Wei, J., 2020. Predicting mobile wallet resistance: a two-staged structural equation modeling-artificial neural network approach. *Int. J. Inf. Manag.* 51, 102047.

Majeed, M., Asare, C., Fatawu, A., Abubakari, A., 2022. An analysis of the effects of customer satisfaction and engagement on social media on repurchase intention in the hospitality industry. *Cogent Business & Management* 9 (1), 2028331.

Overgoor, G., Chica, M., Rand, W., Weishampel, A., 2019. Letting the computers take over: using AI to solve marketing problems. *Calif. Manag. Rev.* 61 (4), 156–185.

Pantano, E., Giglio, S., Dennis, C., 2019. Making sense of consumers' tweets: sentiment outcomes for fast fashion retailers through Big Data analytics. *Int. J. Retail Distrib. Manag.* 47 (9), 915–927

Paschen, J., Wilson, M., Ferreira, J.J., 2020. Collaborative intelligence: how human and artificial intelligence create value along the B2B sales funnel. *Bus. Horiz.* 63 (3), 403–414.

Potdar, V., Joshi, S., Harish, R., Baskerville, R., Wong thongtham, P., 2018. A process model for identifying online customer engagement patterns on Facebook brand. *Inf. Technol. People* 31 (2), 595–614.

Rather, R.A., 2021. Monitoring the impacts of tourism-based social media, risk perception and fear on tourist's attitude and revisiting behaviour in the wake of COVID-19 pandemic. *Curr. Issues Tourism* 24 (23), 3275–3283

Reinartz, W., Wiegand, N., Imschloss, M., 2019. The impact of digital transformation on the retailing value chain. *Int. J. Res. Market.* 36 (3), 350–366.

Sarkar, S., Chauhan, S., Khare, A., 2020. A meta-analysis of antecedents and consequences of trust in mobile commerce. *Int. J. Inf. Manag.* 50, 286–301.

Singh, K., Chatterjee, Sh., Mariani, M. (2024). Applications of generative AI and future organizational performance: The mediating role of explorative and exploitative innovation and the moderating role of ethical dilemmas and environmental dynamism. *Technovation*. Volume 133, 103021.

Singh, N., Jain, M., Kamal, M.M., Bodhi, R., Gupta, B., 2024. Technological paradoxes and artificial intelligence implementation in healthcare. An application of paradox theory. *Technol. Forecast. Soc. Change* 198, 122967

Singh, N., Sinha, N., Liébana-Cabanillas, F.J., 2020. Determining factors in the adoption and recommendation of mobile wallet services in India: analysis of the effect of innovativeness, stress to use and social influence. *Int. J. Inf. Manag.* 50, 191–205.

Torres, P., Augusto, M., Matos, M., 2019. Antecedents and outcomes of digital influencer endorsement: an exploratory study. *Psychol. Market.* 36 (12), 1267–1276.

Wen, C.-H., Cheng, C.-C., Shih, Y.-C., 2022. Artificial intelligence technologies for more flexible recommendation in uniforms. *Data Technol. Appl.* 56 (4), 626–643.

Yang, L., Henthorne, T.L., George, B., 2020. Artificial intelligence and robotics technology in the hospitality industry: current applications and future trends. *Digital transformation in business and society: Theory and cases* 211–228.

Zhou, F., Chu, Z., Sun, H., Hu, R.Q., Hanzo, L., 2018. Artificial noise aided secure cognitive beamforming for cooperative MISO-NOMA using SWIPT. *IEEE Journal on Selected Areas in Communications*, 36 (4), 918–931.